

# Msikaba Bridge

### Concrete mix design development for ladder deck





### Background

- 580m span cable stay bridge
- Initial focus was thermal effects on large foundations during curing.
  - 4 gravity Anchors 50x10x17 each
  - 4 Pylon bases 12x12x8 each
- The ladder deck, at 3m x 2m cross section was comparatively insignificant...





### Ladder deck – The Challenge

- 24m long deck with two edge beams
- Large axial compression & bending due to cables
- Very congested 3 layers Y40@150
- Restricted end is encased in steel box with dense rebar to transfer steel deck box axial load to deck
- Previous history with mix design constituents where in under certain conditions fresh concrete appears to undergo a type of flash set





### Ladder deck – Thermal

- Specification:
  - 65 MPa
  - 85/15 OPC/GGBS: ✓ strength, X thermal
  - Maximum T 70°C during curing
  - Maximum  $\Delta T$  22°C between inside and outside



### **Rebar Congestion**

Add rebar photos in box







### **Rebar congestion in ladder deck into steel box girders**









### Ladder deck - Solutions

- 7 different mix designs trialed, focusing on:
  - Workability (SCC type properties)
  - Strength
  - Mitigating thermal effects





### Ladder deck - Solutions

- Changed 19mm coarse aggregate to a 14mm due to congestion.
- Concerns during trials of early set properties
- Designed for slump of 210mm, but early mix designs set after 15 minutes
- Final 65MPa required 535kg/m<sup>3</sup> binder and changed testing to 56d to address slower strength gain





- Ladder deck Thermal Solutions
- To reduce thermal effects the following were evaluated:
  - Reduced input temperature (aggregate and water)
  - Plumbing to cool curing concrete
  - Insulation
  - Splitting pour
  - Modifying mix design to reduce temperatures
- Increasing GGBS lowered temperatures, but slowed rate of strength gain.





- Wits temperature model developed by Professor Ballim (2004).
- Finite Difference Method to solve for heat flow.
- Predicts time-temperature profile for 2D elements.





# Finite difference model approach



Solve 2-D Fourier Equation:

$$\rho \cdot C_p \cdot \frac{\partial T}{\partial t} = k \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{\partial q}{\partial t}$$

**Boundary Conditions:** 

- 1<sup>st</sup> layer cast on rock
- Side surfaces with steel or timber formwork
- Varying diurnal ambient temperature
- Top surface exposed to air and solar radiation
- Long-wave exit radiation at night

Note use of maturity heat rate  $\frac{\partial q}{\partial M}$ System taken as symmetrical about vertical axis – analyse left half of concrete layers



## Net solar radiation as a boundary condition

Radiation on a horizontal surface Johannesburg, February



 $R_n = A + B \cos(C \cdot t_d + D)$ 

For td<td,am and td>tdpm:

Note: Sinusoidal variation in ambient temperature between likely maximum and minimum Daytime temperatures





## Maturity heat rate for Fourier Equation

# (measured in WITS University adiabatic calorimeter for the proposed concrete materials and mixture design)







• How do you know your results are correct?









• In-situ testing: Centre







### Ladder deck – Thermal Solutions

In-situ testing: Centre Bottom





Š

UNIVERSI

### Ladder deck – Thermal Solutions

• In-situ testing: Side Top





### • In-situ testing

| Position      | Model | Trial Block | Difference |
|---------------|-------|-------------|------------|
| Centre-Bottom | 50 °C | 52 °C       | -2 °C      |
| Centre-Centre | 58 °C | 57 °C       | +1°C       |
| Centre-Top    | 42 °C | 43 °C       | -1 °C      |
| Side-Top      | 35 °C | 38 °C       | -3 °C      |
| Side Middle   | 40 °C | 44 °C       | -4 °C      |
| Side Bottom   | 35 °C | 42 °C       | -7 °C      |





- Mix design met project spec but required adjustments.
- New mix required re-evaluation.





- Initial mix design met project spec but required adjustments.
- New mix required re-evaluation.
- ~10% increase in binder.





• Mix comparison results







Š

UNIVERSI

### Ladder deck – Thermal Solutions

• Differential





- Peak below 67 °C (< 70°C)</li>
- Differential 22° C (≮ 20°C)
- Early-age thermal strains acceptable.

