

Towards an improved behaviour of CRCP thanks to active crack control

Luc Rens

Consulting Engineer – FEBELCEM

Managing Director – EUPAVE

l.rens@febelcem.be

Introduction

- CRCP =
 - Durability
 - Longevity
 - Driving comfort
 - Thanks to absence of transverse contraction joints
 - Fine transverse shrinkage cracks
 - Spacing distance ideally [0.8 3.0 m]
 - Opening width < 0.5 mm</p>

Motorway E40/A3, BE – 1971-1972

2021

Introduction

- However, real life is not ideal
 - Crack spacing from 0.10 m to 15 m
 - Irregular cracks
 - Too widely opened cracks
- CRCP distresses
 - Punch-out = most commonly
 - Heavy wheel loading on longitudinal joint
 - Weak base layer, sensitive to erosion
 - Water infiltration (widely opened longitudinal joint)
 - Absence of drainage facilities
 - Closely spaced cracks

Long tradition of CRCP in Belgium

- 1950 : first section of CRCP on N8
- 1960's : several test sections
- 1970's : extensive use on motorways

 End 1990's – today : revival of CRCP with adapted design (2001-2013 : > 3 million m²)

Evolution of the concept

 Concept 1 (1970-1977) : 20 cm thick, 0.85% reinforcement, asphalt interlayer, concrete cover 6 cm

• Concept 3 (1995-...) : 23 to 25 cm thick, 0.75% reinforcement, asphalt interlayer, concrete cover 8 cm

Shortcomings of concept 3

How to avoid/reduce the clustered cracks?

Research & monitoring to improve the cracking behaviour

- Various dissertations and doctoral theses
 - Monitoring of CRCP behaviour
 - Study of the influence of parameters
 - Simulation with MEPDG, using Belgian conditions
- Slab thickness and longitudinal reinforcement are determining parameters
- Decision to keep the 0.75 %

Case-study of N49 rehabilitation, Zwijndrecht, BE

- 2007 WB-2008 EB
- CRCP + 2lift + use of RCA in bottom layer
- 2011: fragmentation in WB no damage in EB (hydrophobic impregnation?)
- Cores + MIRA: HC + corrosion
- Overlaid with bituminous wearing course – relatively good performance

Case-study of N49 rehabilitation, Zwijndrecht, BE

- Damage after only 3 years : fragmentation between closely spaced cracks in the middle of the lane in combination with horizontal crack
- Horizontal cracks at the height of the steel reinforcement (not between the concrete layers !)

Case-study of N49 rehabilitation, Zwijndrecht, BE

 Investigation with ultrasonic tomography (MIRA)

Adapted design for a next worksite

- Worksite BE motorway E313 in 2-layer CRCP/EAC in 2012
 - No use of recycled concrete aggregate
 - No air entrainer in bottom layer (in order to increase bond between concrete and steel)
 - Reinforcement 1 cm lower (9 cm from surface, 4 cm from interface between bottom and top layer)
 - Active crack control (or induced cracking vs. passive crack control or naturally cracking)

- U.S. Experiences (Texas-1990's, Illinois-2004)
 - Automatic insertion of a plastic tape to a depth of approx. 75 mm
 - The application of a shallow saw cut (approx. 37 mm 1.5 inch) in the young concrete, about 4 hours after laying, using a light "Soff-Cut" type sawing appliance
 - Cracks originated faster and with a more regular pattern than for naturally cracking
- U.S. solutions were very inspiring but not convenient for Belgian construction practice (exposed aggregate concrete – plastic sheet)
- My observation on CRCP roundabouts

- Proposal for the E313 Worksite in 2012
- Sawcut at the edge of the concrete strip :
 - 40 cm long
 - 3 to 6 cm deep
 - spaced at 1.20 m (= average crack spacing)
 - within 36 hours after concreting (when brushing off the concrete mortar for exposed aggregate finishing)

- Monitoring in framework of doctoral thesis – D. Ren, 2015, Delft University
- Results (after first winter)
 - 67 % of the notches were effective, thus initiated a crack
 - Of all cracks, 56% for 30 mm depth and 78% for 60 mm were located at notches (Remark: in case of 60 mm, also
 - earlier sawcut within 24h)
 - Reduced risk of clusters of closely spaced cracks

- Results (after first winter)
 - Reduced risk of clusters of closely spaced cracks

...which was the main goal!!

	Road section	Age (days)	Reinforcement	PROB (2 Consecutive cracks, spacing< 0.6m)	PROB (3 Consecutive cracks, spacing< 0.6m)	PROB (4 Consecutive cracks, spacing< 0.6m))	PROB (5 Consecutive cracks, spacing< 0.6m)
A ative avail	E313-	123	0.75%	23.56%	6.75%	1.45%	0.48%
control – 30 mm	50 1111	263	0.75%	29.23%	14.14%	5.06%	1.62%
		436	0.75%	29.34%	13.97%	5.01%	1.61%
	E313-	4	0.75%	0.00%	0.00%	0.00%	0.00%
Active crack	60 mm	65	0.75%	7.52%	1.20%	0.00%	0.00%
control – 60 mm		204	0.75%	13.27%	5.93%	1.98%	0.40%
		378	0.75%	13.31%	6.07%	2.07%	0.39%
Passive crack control	E17-	4	0.75%	12.50%	1.15%	0.00%	0.00%
	Pinte	60	0.75%	40.93%	18.22%	7.78%	3.13%
		223	0.75%	44.13%	17.93%	7.58%	3.66%
		370	0.75%	50.77%	25.84%	12.44%	5.97%
		587	0.75%	51.76%	31.13%	16.55%	8.77%

Table 7.6 Probabilities of Cluster Cracks.

Figure 5 -- Comparison of cumulative crack spacing distribution at the test sections on E17 and E313 after about 20 months, including 2 winters; the arrows represent the percentage of the crack spacings in the preferred range 0.6 -- 2.4 m (Belgium) ¶

Back to the worksite on the N49 with HC distress

- Use of RCA was assumed cause of HC and related damage of N49, Zwijndrecht, 2007
 - Higher shrinkage
 - Wide open cracks
 - Water infiltration
 - Corrosion

Microscopic image of horizontal crack filled with corrosion particles

Distress due to horizontal cracking

- New type of CRCP distresses
 - Observed at other BE worksites, following all best practices
 - Horizontal cracking at level of steel reinforcement
 - Similarities with punch-out
 - Between closely spaced cracks
 - But also differences with punch-outs
 - In wheel track
 - Not only in heavy duty lane
 - Only upper part of concrete layer is fragmented
 - How is this caused??
 - Which are influencing parameters??

Cases observed in other countries

- A. Texas, U.S.
 - Ref: Prof. Moon Won
 - HC observed since 1999
 - Research & recommendations
 - Concrete: low E, low COTE
 - Steel: amount + 2 layers of reinforcement for thick CRCP
 - Construction: curing effectiveness, temperature variations through slab depth, consolidation of concrete

Cases observed in other countries

- B. Japan
 - Ban-Etsu expressway
 - Study by T. Nishizawa
 - Transverse curling of CRCP

21

Distress mechanism of HC

- What is (almost) sure:
 - Creation of HC happens:
 - At young age
 - Due to environmental loading
 - Even before opening to traffic
 - At primary cracks at a distance of 10 to 15 m
 - Propagation of HC happens:
 - Under heavy traffic loading
 - Prevention: ACTIVE CRACK CONTROL!

Closing remarks

- Active crack control = simple and efficient technique
 - Depth and timing of sawcut are important
 - BE specs: spaced 1.20m 4cm deep 40 cm long within 24h
 - Faster crack development
 - More equal crack spacing Straighter cracks Less Y-cracks
 - Reduced risk of clustered cracks AND of widely spaced cracks !!!
- Mandatory for CRCP in Belgium
 - In standard specifications for Flemish and Walloon Region
 - Except for roundabouts
 - Control of execution!

Thank you for your kind attention

and the

BRIT-EUROPEAN

00.72

ansport De Cock

100