

Use of alternative aggregates in pavement concrete

Research And Practice In Belgium

Elia Boonen - 29/8/2023

Overview

- 1. Intro why?
- 2. Current regulations What is allowed now?
- 3. Recent research results update
- 4. Recent pilot applications what is possible?
- 5. Future what's next?

6. Conclusions & perspectives

1. Intro – why alternative aggregates?

- From linear to more circular economy:
 - More than recycling!
- Use of *recycled or manufactured* aggregates can provide one possible means, but we could go further...

 $\ensuremath{\mathbb{C}}$ Ellen MacArthur Foundation; World Economic Forum; Boston Consulting Group

Alternative aggregates - Boonen et al.

Example: Impact of (High Quality) RCAs...

Use of RCA in pavement quality concrete
= "green(er) concrete" ?

- Selective demolition leads to more "high quality" raw materials, available locally (Urban Mining):
 - Savings in natural resources
 - Important impact on land use
 - Less transport, CO₂-emissions & traffic nuisance
 - Less landfill with inert waste

Alternative aggregates - Boonen et al.

2. Currect practice & regulations

A. Specifications for *high quality RCA* according to Flemish standard road specifications SB250 & Belgian standard NBN B15-001:2018 (*type A+*):

(Categories according to EN 12620)

- d ≥ 4 mm & D ≥ 10 mm;
- Minimum Rc₉₀, Rcu₉₅, Ra₁, **XRg_{0,5}**, FL₂₋
- Minimum **Fl₂₀, f_{1,5}, LA₃₅,** SS_{0,2}, A₄₀
- Particle density $\rho_{rd} \ge 2200 \text{ kg/m}^3$
- Water absorption (after 24h) ≤ 10%, with a maximum variation of ±2% to the declared value.

Annex E in EN 206 (2014)

Property ^a	Clause in Type Category EN 12620:2002+A1:2008		Category according to EN 12620			
Fines content	4.6	A + B	Category or value to be declared			
Flakiness Index	4.4	A + B	$\leq Fl_{50} \mbox{ or } \leq Sl_{55}$			
Resistance to fragmentation	5.2	A + B	$\leq LA_{50}$ or $\leq SZ_{32}$			
Oven dried particle density	5.5	Α	≥ 2 100 kg/m ³			
$\rho_{\rm rd}$		В	≥ 1 700 kg/m ³			
Water absorption	5.5	A + B	Value to be declared			
h	5.8	Α	Rc90, Rcu95, Rb10-, Ra1-, FL XRg1-			
Constituents ^D		В	Rc50, Rcu70, Rb30-, Ra5-, FL2-, XRg2-			
Water soluble sulfate content	6.3.3	A + B	SS _{0,2}			
Acid-soluble chloride ion content	6.2	A + B	Value to be declared			
Influence on the initial setting time	6.4.1	A + B	$\leq A_{40}$			

Road concrete with RCAs: what is allowed now?

- Use of high quality RCA in pavement concrete with up to 20% (bicycle paths and bottom layers of concrete pavements) to 40% (in linear elements) replacement of the coarse aggregates (d > 4 mm)
- Since 2017: certification of pavement concrete to assure compliance with the requirements & quality control:

	D _{max}	Min. Cement content	Max. W/C- ratio	Flexural strength 28 d	Compres strength 28 d	sive	Compres strength 7 d	sive	Freeze-thaw resistance with de-icing salts	
Bottom layer B1-B5	31,5 mm	≥ 375 kg/m³	≤ 0,45	6,0 MPa	55 MPa		35 MPa		≤ 1,5 kg/m²	
Bottom layer B6-B10	31,5 mm	≥ 350 kg/m²	≤ 0,50	5,0 MPa	45 MPa		30 MPa		≤ 3,0 kg/m²	
Bicycle path	31,5 mm	≥ 350 kg/m²	≤ 0,50							
BF	20 or 14 mm	≥ 375 kg/m²	≤ 0,50	4,0 MPa	40 MPa 35 MPa	(air < 3%) (air ≥ 3%	25 MPa 20 MPa	(air < 3%) (air ≥ 3%	≤ 3,0 kg/m²	
	6,3 mm	≥ 400 kg/m³	≤ 0 <i>,</i> 45							
Linear elements	31,5 mm	≥ 350 kg/m²	-	-	40 MPa 35 MPa	(air < 3%) (air > 3%)	25 MPa 20 MPa	(air < 3%)	≤ 3,0 kg/m²	

Current practice & regulations

B. Artificial aggregates from *crushed stainless steel slags* according to SB 250 (only allowed in asphalt for now!)

(Categories according to EN 13043)

- d ≥ 2 mm & D ≥ 10 mm;
- percentage of crushed and broken surfaces C90/1
- PSV50, with PSV measured after 7 days under water;
- category D1 according to PTV 411 (dimensional stability);
- Stainless steel slags can only comprise up to 50 % of the aggregate (d ≥ 2 mm) fraction of mixtures of SMA (splitmastic asphalt) or ZOA (very open asphalt).

3. Recent research results

• Characterisation and quality of typical RCA in Belgium (Recybeton [2016,2018], PXL [2017]):

RCA type	Fines	Particle Water		LA	MDE	Flakiness
	content	density	absorption			index
	[%]	[kg/m³]	[%]	[%]	[%]	[%]
A-1	1.7	2500	2.9	25	18	6
B-1	1.6	2320	5.3	30	23	7
C-1	2.1	2280	6.6	36	24	9
D-1	2.0	2400	4.3	25	18	7
G-1	2.3	2320	5.8	31	29	5
I-1	4.4	2310	5.7	31	21	5
Requirements	≤ 1.5	≥ 2200	<i>≤</i> 10	<i>≤</i> 35	-	≤ 20
NBN B 15-001						

- Important aspects remain water absorption and fines content water balance
- Correlation between LA-coefficient & particle density water absorption

Influence of RCA on concrete properties (Boonen et al. 2018 – ISCP Berlin)

- Typical concrete compositions for bicycle paths and agricultural roads (from 20 to 75% of replacement):
 - Equal mechanical properties up to 30 (or 50%) without jeopardizing durability
 - Challenge remains water balance and workability in time

Mode & time of impregnation has little influence:

Recent research results – artificial aggregates

- Purified, crushed stainless steel slags in road concrete
- Trial section of 300 m at highway A8 (2017):
 - Dmax of 14 mm 100% of Stinox[®] aggregates d> 4mm
 - Minimum 400 kg/m³ of CEM III/A 42,5 N LA; W/C-ratio ≤ 0,45

- Air content between 3-6% (air entraining agent)
- Slump value S1 (10-20 mm at 30 minutes after production)
- Follow-up by BRRC (Rc WAI scaling)

Together for sustainable roads

Results for trial section at A8 highway

Property	Date of concrete	Sample type	Result	Requirement Qualiroutes	But:
R _c 28d (MPa)	6/3/2017	2 Cubes 150 mm	62,8 avg.		Skid registered in time?
$R_c 28d (MPa)$	21/3/2017	2.0	62,6 avg.	,	Skiu resistance in time:
\mathbf{R}_{c} 90d (MPa)	6/3/2017	$3 \text{ Cores } \Phi 113$	79,3 avg.	50 ind.	
$\frac{\mathbf{R}_{c} 900 (\mathrm{MPa})}{\mathrm{NV}}$	21/3/2017	mm, H 100 mm	/2,3 avg.		-
Water	6/3/2017	4 Cubes 100 mm	6,4 avg.	6,8 ind.	
absorption (%)	21/3/2017	4 Cubes 100 mm	6,0 avg.	6,3 avg.	
Scaling after	6/3/2017 21/3/2017	4 Cores Φ 11? mm, H 50 mm sawn surface	DWC Pass1	EWAY FRICTION C	OEFFICIENT SCRIM A8 FROYENNES
(g/dm ²) **	6/3/2017	4 Cores Φ 11: mm, H 50 mm exposed surfac	0,90		
* Re-calculated b cubes at 90 d ** Based on forme	oased on: 50 MPa for er ISO/DIS 4846.2:1984	cores at 90 d (wit	0,70		
Hanote	au & Hontoy	(2018) <u>کي</u>	0,50		
			0,40		
		Pour votre sécurité, nous mesurons l'adhérence	0,20		
			0,10		
		0.0	0 50	100 150 DISTAN	200 250 300 350 400 ICE [M]
		t	ive aggregate	s - Boonen e	tal. 11 Belgian Road Research Centre

4. (More) Recent pilot applications in Belgium: what is possible?

A. The "Circular Road" in Veurne [2018]

Demolition of existing agricultural concrete road + base layer and recycling of:

- RCA 8/20 in new pavement concrete (30% of inert fraction 50% of coarse aggregates)
- Crusher sand 0/8 + old base layer 0/56 in cement treated base

Alternative aggregates - Boonen et al.

Circular road in Veurne: results

Table 6. Test results on fresh and hardened concrete for the "Circular Road" in Veurne							
		Air	Apparent	Compressive strength	Water	Scaling* mass	
	Slump [mm]	content	density	after 28 days	absorption	loss after	
	[]	[%]	[kg/m³]	[MPa]	NBN B15-215 [%]	28 cycles [kg/m²]	
Road concrete with 50% of	20 mm	4.1	2336	58.0	57	0.28	
RCA, construction class B6-B10 (with air)	20 11111	1,1	2000	00,0	5,7	0,20	
*tested on the formwork surface of the samples							

Scaling on cores: < 3 kg/m²

Alternative aggregates - Boonen et al.

B. Ridias project in Gembloux [2017-2019]

- Test sections on agricultural road « Chemin du Ridias » to be renovated
- Opportunity to test different innovative solutions incorporating recycled materials (even *mixed* recycled aggregates)

Ridias project – test sections

- 1-2a,b: JPCP, 18 cm thickness, 0-25-50 % mixed recycled aggregates
- 3a,b: RCC, 84-90% mixed recycled aggregates + chipping surface dressing

Alternative aggregates - Boonen et al.

Ridias - results for <u>pavement concrete</u> (350 kg/m³ C, W/C < 0,50, no AEA)

	Reference		25 vol% mixed agg.		50 vol% mixed agg.		Target	Requirement
	plant	on site	plant	on site	plant	on site	value	Quanroutes
Slump (mm)	55 65	46 35 25	60 30	35 16 40	30	15 17 30 50	25-40 at plant	-
Air content (%)	1,5	1,7	1,8	2,1 1,5	2	3 2,4 2,5	-	-
Water content (% by heating)	10,0	-	10,7	-	10,3	9,9r 10,4	Ref: 8,1 25%: 9,1 50%: 10,1	$W/C \le 0,50$
Fresh density (kg/m³)	23	v	//C =	0,58	l inst	ead o	of 0,48	-
R _c 7d (MPa) – cubes 15 cm	-	23,6	-	29,4	-	30,5	-	26,9*
R _c 28d (MPa) – cubes 15 cm	-	40,3	-	45,5	-	46,8	-	39,6*
Water absorption (%)	-	7,0	-	6,4	-	7,4	-	6,0 (if de-icing salts are used)
Scaling @ 28 cycles – Slab test** (kg/m ²)	-	9,95	-	6,04	-	5,58	(3,00)	-
¹ before adding of 15 l extra water on site * Pa calculated based on: 50 MPa for cores at 00 d (<i>Pásagu II and II</i> without air entraining agent)								

* Re-calculated based on: 50 MPa for cores at 90 d (Réseau II and II without air entraining agent) –

46,7 MPa for cubes at 90 d

** Based on CEN/TS 12390-9 and tested on formwork surface

Italic values pertain to results obtained for the same truck mixer

Ridias project – conclusions & perspectives

Utilisation of mixed recycled aggregates in this pilot site:

- Did not alter way of execution
- Allowed to obtain satisfying performance results (low volume & agricultural roads)
- Enabled substantial economic savings

Points of attention:

- Control of water balance
- Variability!
- Long term behavior (FWD, GPR, visual inspection, etc.)

Alternative aggregates - Boonen et al.

C. Trial section for Bypass of Antwerp [2019-2021]

Partial replacement of coarse aggregates by crushed stainless steel slags (*Stinox*[®]) for "*highway concrete*":

- Dmax of 20 mm
- 405 kg/m³ of CEM III/A 42,5 N LA
- − W/C-ratio \leq 0,45
- − Air content \ge 3% (AEA)
- Slump value S1 (10-40 mm for slipform)
- Exposed aggregates surface finishing
- Lab testing + field trial of 300 m CRCP

	Mixture 1	Mixture 2	
	(Stinox 6/10	(1 +	Requirement SB 250
	+ 10/14 mm)	Stinox sand 0/2 mm)	
Slump (mm)	10-7 mm	7-4 mm	20-60 mm
Air content (%)	4,0-4,8 %	4,3-3,7 %	TBR
Fresh density (kg/m³)	2446	2460	TBR
Rc 7d (MPa) – cubes 15 cm	50,3	49,5	30
Rc 28d (MPa) – cubes 15 cm	69,4	68,4	50
Water absorption (%)	5,6	6,1	6,3 avg (for 3% of air)

Table 9. Results of test concrete mixes with crushed stainless steel aggregates of type Stino

CRCP trial section with crushed stainless slag aggregates @ Antwerp (2019)

 Construction + follow-up (CPX, skid resistance, Evenness – APL, texture, coring, etc.)

Freeze-thaw resistance with de-

5. Future: where to go from here?

- Integration of recycled "sand fraction" (0/4; 0/6,3) and/or mixed recycled aggregates in rich concrete;
- Alternative cements and/or binders based on waste materials (slags, fly ash): geopolymers and hybrid cements...

Bridging the gap between research & practice for circular, "green" concrete? CIRCULAIR

Alternative aggregates - Boonen et al.

BETONAKKOORD

VLAANDEREN

Belgian Road Research Centre Together for sustainable roads

[2021-...]

Alternative cements & aggregates

 Monocrete project: test site with 50% of recycled aggregates and an alternative cement CEM V (experimental)

https://brrc.be/sites/default/files/2023-03/MONOCRETE_FR.pdf

Alternative aggregates - Boonen et al.

Recycled crusher sand

- "High quality" concrete crusher sand (~15%)
- First (collective) research & pilot projects starting...

https://www.linkedin.com/feed/update/urn:li:activity: 6907354235453984768/

Alternative aggregates - Boonen et al.

6. Conclusions and perspectives

- Alternative (recycled and/or artificial) aggregates can contribute to the circular economy: less transport, better land use and preservation of natural resources
 - (High) quality is crucial and can be obtained by proper pre-sorting, adapted process and quality control
 - Use of high standard RCA in pavement concrete is possible without loss of quality and durability (*e.g. freeze-thaw resistance*)
- Recent test cases and research efforts have shown the possibility to go even further in replacement rate (40-60%?), type of application (industrial pavements, bicycle lanes, rural roads, linear elements,...) and/or even type of aggregate (RCA, stainless steel slags, crusher sand...)

Acknowledgements

Elia Boonen, M.Sc. Eng., PhD

Deputy Head of Division Concrete Roads – Geotechnics – Drainage and Infiltration Technics

- +32 2 766 03 41 +32 477 94 38 21
- e.boonen@brrc.be
- www.brrc.be

E

