Update on Cement and Concrete Industry Issues

Bryan Perrie
CEO

Structure

- Background
- Environmental
- Governmental
- Technical

CCSA Operating Structure

CCSA

Industry

Technical

Business Development

Industry

- Environmental
- Governmental
- Standards

- "Vision: Net Zero Carbon" by 2050 with an initial milestone set by 2030. Press Release on CCSA website.
- Well represented on government steering committees to inform policies and legislation

- Government engagement on:
 - Climate change

- Government engagement on:
 - Climate change
 - Air quality

- Government engagement on:
 - Climate change
 - Air quality
 - Water management

- Government engagement on:
 - Climate change
 - Air quality
 - Water management
 - Rehabilitation of mining activities

Environmental

- Government engagement on:
 - Climate change
 - Air quality
 - Water management
 - Rehabilitation of mining activities
 - Waste management including waste tyres

- SABS engagement on:
 - Air quality emission standards

- SABS engagement on:
 - Air quality emission standards
 - Dust management and fugitive emissions

- SABS engagement on:
 - Air quality emission standards
 - Dust management and fugitive emissions
 - Carbon capture and utilisation

- Actively involved in BUSA committees:
 - Environment sub-committee
 - Waste sub-committee
 - Water sub-committee
 - Climate change sub-committee
 - Just transition committee

Industry

- Environmental
- Governmental
- Technical

Governmental

- Protection of local industry
- National Regulator for Compulsory Standards (NRCS)
- Consumer Goods and Services Ombud (CGSO)

 Department of Trade, Industry and Competition (DTIC)

- Protection of local industry
 - Anti-dumping tariff applications

- Protection of local industry
 - Anti-dumping tariff applications
 - Safeguard Application for general import tariff

- Protection of local industry
 - Anti-dumping tariff applications
 - Safeguard Application for general import tariff
 - Designation of cement

- Protection of local industry
 - Anti-dumping tariff applications
 - Safeguard Application for general import tariff
 - Designation of cement
 - Sanral

- NRCS
 - Background

- NRCS
 - Background
 - Lack of response to complaints

- NRCS
 - Background
 - Lack of response to complaints
 - Claims of confidentiality

- NRCS
 - Background
 - Lack of response to complaints
 - Claims of confidentiality
 - Lack of transparency in fee determination

- CGSO
 - Background
 - Actions

- CGSO
 - Background

- CGSO
 - Background
 - Actions

- DTIC
 - Background

- DTIC
 - Background
 - Request

Technical

- School of Concrete Technology
- Information Centre
- Standards
- Consulting

Standards

- Currently CCSA chairs the SABS Technical committee TC81 SC01 which covers Cement, Lime, Concrete and Concrete Products
- Total of 147 standards

Standards

- SANS 3001 series
- SANS 1083 Aggregates for Concrete
- SANS 10100-2 and SANS 2001
- SANS 50197-5

SANS 3001 Series

- Currently no standard numbering
- All civil test methods moved to SANS 3001 series eg Bi, Ag, Gr etc. SANS 3001 AG ???

SANS 1083 Aggregates for Concrete

 In future SANS 1083 Aggregates for Construction with 5 parts

- Concrete
- Mortar and plaster
- Gabions and ballast
- Bitumen products
- Surfacings

SANS 10100-2 and SANS 2001

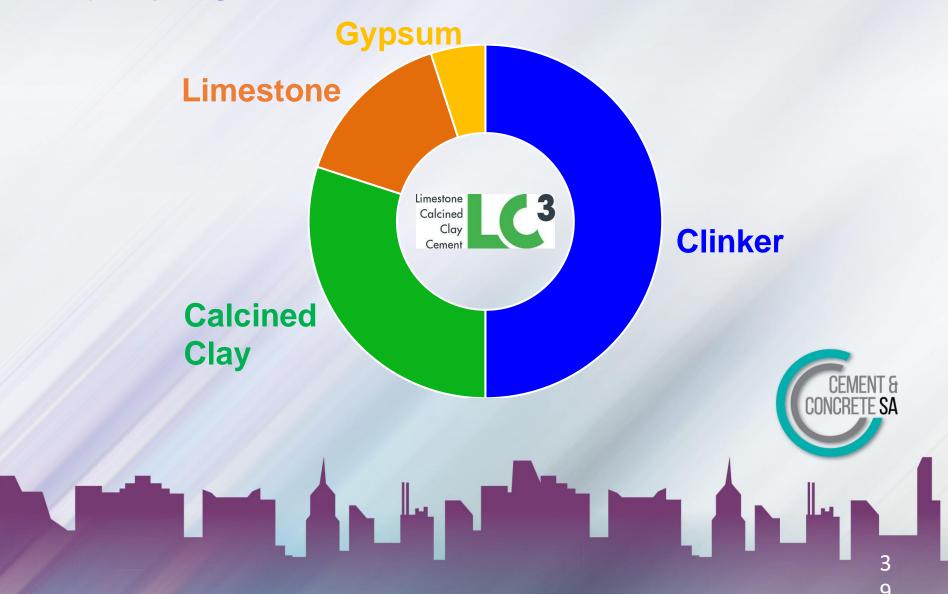
- Currently SANS 10100-1 and 2 and SANS 2001
 CC1 (SANS 1200 G)
- SANS 10100-1 replaced by EN1991-1-1 (SANS 51991-1-1)
- No equivalent Part 2

SANS 10100-2 and SANS 2001

- Adopting and modifying EN 206 Concrete and EN13670-1 Execution of Works
- Intended to replace SANS 2001 CC1 and 1200
 G

SANS 50197-5

- Currently SANS 50197-1 and SANS 50413-1
- New standard SANS 50197-5 for LC3 cements


SANS 50197-5

- Currently SANS 50197-1 and SANS 50413-1
- New standard SANS 50197-5 for LC3 cements

•

What is LC³?

Why the LC³ system? — be energised

Production of Portland cement

Contributes about 8% of global anthropogenic CO₂ emissions

Blended cement

- A promising option for lowering costs and environmental impact of concrete (UNEP report, 2016)
- Clinker content partially replaced by Supplementary Cementitious materials (SCMs)

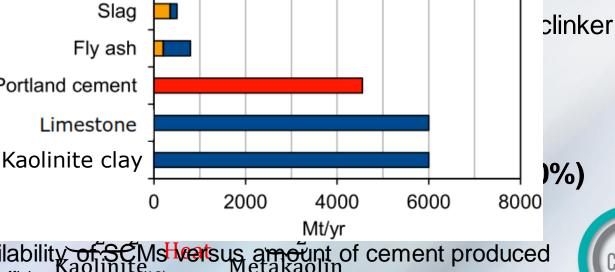
Available

?S

□Used

Waste glass

- Source_{Vegetable} ashes
- Energy Natural pozzolan
 - O Cal


Calcine Portland cement

O Stro

Limestone

Slag

Can red

Estimated availability of SCMs wertsus amount of cement produced Metakaolin (UNEP report on eco-efficient cements, 2016)

Table 1 — The 27 products in the family of common cements

			Composition (percentage by mass®)										
		Composition (percentage by mass ^a)											
	Notation of the 27 products (types of common cement)		Main constituents										
Main types			Clinker	Blast- furnace slag	Silica fume	Pozzolana		Fly ash		Bumt shale	Limestone		Minor additional
						natural	natural calcined	siliceous	calca- reous	Strate			constituents
		K	S	Dp	Р	Q	V	W	Т	L	LL		
CEMI	Portland cement	CEMI	95-100	_	_	-	-	_	_	-	-	-	0-5
CEM II	Portland-slag	CEM II/A-S	80-94	6-20	_	_	-	_	_	_	_	_	0-5
	cement	CEM II/B-S	65-79	21-35	-	_	-	-	-	_	_	_	0-5
	Portland-silica fume cement	CEM II/A-D	90-94	-	6-10	-	-	-	-	-	-	-	0-5
	Portland-pozzolana cement	CEM II/A-P	80-94	_	_	6-20	_	_	_	_	_	_	0-5
		CEM II/B-P	65-79	_	_	21-35	_	_	_	_	_	_	0-5
		CEM II/A-Q	80-94	_	-	_	6-20	-	-	-	_	-	0-5
		CEM II/B-Q	65-79	_	_	_	21-35	-	_	_	_	-	0-5
	Portland-fly ash cement	CEM II/A-V	80-94	_	_	_	_	6-20	_	_	_	-	0-5
		CEM II/B-V	65-79	_	_	_	_	21-35	_	_	_	_	0-5
		CEM II/A-W	80-94	_	_	_	_	_	6-20	_	_	_	0-5
		CEM II/B-W	65-79	_	_	_	-	-	21-35	_	_	_	0-5
	Portland-burnt	CEM II/A-T	80-94	_	-	_	-	_	_	6-20	_	_	0-5
	shale cement	CEM II/B-T	65-79	-	-	-	-	-	-	21-35	-	_	0-5
	Portland- limestone cement	CEM II/A-L	80-94	-	-	-	-	-	-	-	6-20	-	0-5
		CEM II/B-L	65-79	-	-	_	-	-	_	-	21-35	-	0-5
		CEM II/A-LL	80-94	_	_	-	_	_	-	-	_	6-20	0-5
		CEM II/B-LL	65-79	_	_	_	_	_	_	_	_	21-35	0-5
	Portland-composite	CEM II/A-M	80-88	(0-5	
	cement ^C	CEM II/B-M	65-79	‹							>	0-0	
CEM III	Blast fumace cement	CEM III/A	35-64	36-65	_	_	_	-	_	-	_	-	0-5
		CEM III/B	20-34	66-80	_	-	_	_	_	-	-	-	0-5
		CEM III/C	5-19	81-95	-	-	-	-	_	-	-	-	0-5
CEM IV	Pozzolanic CEM IV/A		65-89	_	<					-	0-5		
	cement ^c	CEM IV/B	45-64	_	<		> -					-	0-5
CEMV	Composite	CEM V/A	40-64	18-30	_	<	18-30 -	>	-	-	_	-	0-5
	cement ^c	CEM V/B	20-38	31-49	_	<	<>			_	_	_	0-5

The values in the table refer to the sum of the main and minor additional constituents.

The proportion of silica fume is limited to 10 %.

c In Portland-composite cements CEM II/A-M and CEM II/B-M, in pozzolanic cements CEM IV/A and CEM IV/B and in composite cements CEM V/A and CEM V/B the main constituents other than clinker shall be declared by designation of the cement (for examples, see Clause 8).

Table 1 — Portland-composite cement CEM II/C-M and Composite cement CEM VI

Main types	Notation of the products (types of cement)		Composition (percentage by mass ^a)											
			Main constituents											
			Clinker fu	Blast-	Silica fume	Pozzolana		Fly ash		Down			Minor additional	
				furnace slag		natural	natural calcined	siliceous	calca- reous	Burnt shale	Limestone		constituents	
	Туре name	Type notation	К	S	$D_{\mathbf{p}}$	P	Q	V	W	Т	Lc	LLc		
CEM II	Portland- composite cement ^d	CEM II/C-M	50-64	⟨									0-5	
CEM VI	Composite cement	CEM VI (S-P)	35-49	31-59	-	6-20	-	-	-	-	_	-	0-5	
		CEM VI (S-V)	3 5-4 9	31-59	-	-	_	6-20	_	_	_	-	0-5	
		CEM VI (S-L)	35-49	31-59	-	-	_	_	_	_	6-20	-	0-5	
		CEM VI (S-LL)	35-49	31-59	-	-	-	-	_	-	_	6-20	0-5	

The values in the table refer to the sum of the main and minor additional constituents.

5 DECHIDEMENTS

b The proportion of silica fume is limited to 6-10 % by mass.

c The proportion of limestone (sum of L, LL) is limited to 6-20 % by mass.

The main constituents other than clinker shall be declared by designation of the cement (for examples, see Clause 6).

Conclusion

- LC³ system Low-Cost and Low-Carbon system
- All selected clays composed mainly of quartz, illite and kaolinite
- 'Optimum' proportion 55% Clinker, 35% Calcined clay, 10% LS
- LC³ mixes perform similar to, or better than, the reference mixes
- Kaolinite clays are not the same each source must be examined

SANS 50197-5

- Process
 - Currently with SABS and awaiting publication
 - NRCS VC9085 needs amending
 - All relevant SABS standards need updating

Thank You

Questions?

